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ABSTRACT: Using the integral equation of the Doi−Edwards theory that
only accounts for tube orientation of entangled linear polymers, we explore
the behavior of the stress maximum typically observed in shear startup as a
function of the waiting time tw between repeated startup runs. Depending on
whether the first run is interrupted before the maximum, or sufficiently
beyond it, the magnitude of the peak in the second run comes out
nonmonotonic with tw or else monotonically increasing, respectively. A
similar behavior has been observed in several experiments and commonly
attributed to structural changes of the entangled network. By emphasizing the
role played by the mere orientation of the network strands in faithfully
reproducing all the observed behavior, at least qualitatively, our results help
to put things in better perspective.

Entangled polymers in the liquid state exhibit a complex
nonlinear viscoelastic behavior, even when the polymer

chain is linear (no branches), and some of that complexity is
often attributed to the entanglement dynamics, that is, to the
fact that fast flows induce some disentanglement. It is also
expected that, upon letting the polymer rest for a sufficiently
long time, the polymer regains the equilibrium entangled
structure. Over the years, many authors have reported
experiments of repeated shear startup runs for linear polymers
at shear rates for which a typical overshoot occurs in the stress
versus time response.1−9 They found that the magnitude of the
overshoot peak decreases significantly upon repeating the
startup run (at the same shear rate) after a short time of stress
relaxation following steady state, whereas by waiting pro-
gressively longer times, the peak height correspondingly
increases, to finally attain the original value of the first run.
Most authors discuss these results in terms of a disentangle-
ment process brought about by the first run and of re-
entanglement kinetics during the period of rest.
More recently, Wang et al.10,11 report more complex

experiments of shear startup. In particular, in a sequence of
experiments on a polybutadiene solution, a first run at a low
rate (0.25 s−1) is stopped before reaching the peak and then
started again after some waiting time tw, but at a higher rate (15
s−1). The magnitude of the peak attained in the second run
shows a nonmonotonic behavior. Specifically, it first decreases
with increasing tw from 0 to a few seconds, then slowly grows
up with increasing the waiting time to finally reach the value
associated with a single startup (starting from equilibrium) at
the higher rate of 15 s−1. Wang et al. interpret these (and other)
data in terms of disentanglement, occurring when the elastic
(entropic) force in the stretched subchains of the entangled
network overcomes the intermolecular gripping force con-

centrated at the entanglements. In a subsequent comment to
the paper of Wang et al.,11 Graham et al.12 use the Rolie-Poly
model (based on standard tube model concepts) to show that a
similar nonmonotonic behavior can in fact be predicted by that
model. They say that a careful analysis of the model predictions
reveals that “The nonmonotonic response in σxy,max(tw) is due
to the delayed relaxation of the normal stress σyy”, and that
“The postflow reduction of σyy is due to retraction of the small
amount of stretching that accumulates during the flow.”
In this letter, we want to show that, differently from the

opinions of Wang et al.11 and of Graham et al.,12 the classical,
purely orientational, integral equation of Doi and Edwards13,14

already predicts a nonmonotonic behavior, in all, similar to that
shown by the above-mentioned data. This will not imply that
chain stretch and disentanglement do not occur (see later), but
it may constitute a warning against drawing premature
conclusions from data of repeated startup runs.
It is recalled that the original theory of Doi and Edwards

predicts a stress that is based entirely on the orientational
anisotropy of tube segments, the polymer chain within the
confining tube remaining unstretched. Hence, in a shear flow,
the shear stress at the generic time t is given by
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where GN
0 is the plateau modulus, Sxy = ⟨uxuy⟩ is the average

tube orientation (u being the unit vector tangent to the tube
axis or “primitive chain”), and Q is a tensor that depends on the
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relative deformation between current time t and previous time
t′, that is, on γ(t) − γ(t′). For the sake of simplicity, we have
limited the memory function to a single exponential, τ being
the disengagement relaxation time of the chain from the tube.
The numerical factor 15/4 is linked to tensor Q that, here and
in the following, is taken to be the so-called rigorous one.14,15

Should one take the tensor of the independent alignment
approximation (IAA),14,16 then the numerical factor becomes 5.
The function Qxy(γ) goes through a maximum at γmax ≈ 1.91,
and the peak magnitude is Qmax ≈ 0.254.17

In a single startup, with the shear rate γ,̇ the integral in eq 1 is
conveniently broken up in the sum of the integral between −∞
and 0 (t′ = 0 being the time when flow begins), integral that
becomes exp(−t/τ)Qxy[γ(t)], plus the integral between 0 and
current time t, to be calculated numerically. The result
generates the function Sxy(γ, Wi), where γ = γ(t) = γṫ is the
current deformation, and Wi = γτ̇ is the Weissenberg number.
Similar to Qxy(γ), also Sxy(γ, Wi) goes through a maximum at
the deformation γmax ≈ 1.91 independently of Wi, but the
magnitude of the peak, Smax(Wi), depends on Wi in the way
shown in Figure 1. In the linear limit (Wi → 0), the peak
vanishes, while in fast flows, the peak magnitude approaches
Qmax with increasing Wi.

In repeated startup runs like those mentioned before, the
integral in eq 1 is best broken up in four parts, the integration
time t′ running from −∞ to 0, from 0 to t1, from t1 to t1 + tw,
and from t1 + tw to current time t, respectively. Here t1 is the
time at which the first run is halted, and tw is the waiting time
before restarting. The shear rates in the two runs are generally
different, but we shall first take them to be equal. For such a
case, eq 1 generates the function Sxy(γ, γ1, Wi, tw/τ), where γ1 =
γṫ1 is the deformation at which the first run is terminated.
We now need to distinguish the case where γ1 falls before, or

else beyond, the maximum. If γ1 < γmax, then in the second run
a maximum of magnitude Smax(γ1, Wi, tw/τ) is predicted for all
values of the three parameters. In Figure 2a, for the fixed value
γ1 = 1.5, we plot the shear stress ratio σmax/σmax,eq = Smax(γ1, Wi,
tw/τ)/Smax,eq(Wi) as a function of tw/τ, where Smax,eq(Wi) is the
peak magnitude for a single run starting from equilibrium,
reported in Figure 1. As one would expect, such a ratio goes to
unity both for tw = 0, that is, when the first run goes on
unperturbed, and for long waiting times, that is, when the
second run starts again from equilibrium. However, for
intermediate values of tw, the magnitude of the maximum
decreases, the more so the higher is the shear rate. Figure 2b

shows similar results when γ1 is changed, while the shear rate is
held fixed (Wi = 10). The dip of the maximum becomes deeper
as γ1 approaches γmax. (For an interpretation of the physics
behind the results in Figure 2, see Supporting Information.)
Figure 3 instead shows what happens when γ1 > γmax (atWi =

10). Except when γ1 is very large, no maximum is found for
small values of the waiting time. Indeed, since the first run has
been interrupted beyond the maximum, that is, when the
orientation (hence, the stress) was already decreasing toward its
steady-state value, for short resting times, no significant change

Figure 1. Magnitude of the Sxy peak in shear startup vs the
Weissenberg number, as obtained from eq 1 with the rigorous tensor
Q of Doi−Edwards theory.

Figure 2. Peak magnitude ratio σmax/σmax,eq as a function of the waiting
time, the shear rate in the second run being the same as in the first,
and γ1 less than γmax. (a) Curves for γ1 = 1.5 at several values of the
shear rate (Wi = 0.7, 1, 2, 5, 10, and 100, from top to bottom) and (b)
for a fixed shear rate (Wi = 10) at several values of γ1 (0.5, 1, 1.5, 1.7,
and 1.9, from top to bottom).

Figure 3. Effect of waiting time on σmax/σmax,eq as in Figure 2b, but for
γ1 larger than γmax (γ1 = 2, 2.2, 2.5, 3, 4, 6, 8, 16, 32, from top to
bottom). Each curve starts from the value of tw/τ, where the maximum
reappears in the second run.
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occurs, and upon restarting the flow, the stress keeps decreasing
toward the steady state. For longer waiting times, however, the
maximum again appears. Depending on how much γ1 is larger
than γmax, the behavior is nonmonotonic (γ1 < ∼8) or else
monotonically increasing with increasing waiting time. The
lowest curve in Figure 3 represents the recovery of the
maximum when the starting condition is the steady state at the
given value of the shear rate (Wi = 10). This last curve
qualitatively represents the results reported by several
authors.1−9

We finally move on to the case when the second startup is
run at a higher rate than the first one, as in the data of Wang et
al.10,11 Because of the large number of parameters, we only
consider a single case, roughly corresponding to the conditions
of the Wang et al. experiment. We take for the first run γ1 = 1.5
and Wi1 = 5, and for the second run Wi2 = 50. The two upper
curves in Figure 4 represent the ratio Smax(1.5, 5, 50, tw/τ)/
Smax,eq(50) plotted both as a function of tw/τ and of (t1 + tw)/τ,
to the left and to the right, respectively. The rightmost of the
two curves should be compared to the data reported in the
TOC figure of Wang et al.,10 as well as in Figure 6 of Wang et
al.11 The qualitative resemblance of our red curve with the data
in those figures is apparent, and it should be emphasized that
our red (solid) curve comes out directly from eq 1 of Doi and
Edwards, only accounting for tube orientation.

What we have shown so far does not imply that chain stretch
and chain disentanglement do not play any role. On the
contrary, since the early work of Pearson et al.,18 we know that
in a shear startup chain stretch increases both the γ-location
and the height of the shear stress maximum. Hence, if one
wants to deal with the problem more quantitatively, chain
stretch (based on Rouse time) cannot be ignored, not to speak
of the oversimplification adopted here of taking a single
orientational time. However, it can be shown (not reported
here) that accounting for both chain stretch and for a spectrum
of orientational times does not alter the above results
qualitatively.
The possible role played by disentanglement, also referred to

as “structural” change, is more controversial, as no widely
accepted theory has been developed so far. On the other hand,
it is undeniable that fast flows induce disentanglement. The
molecular dynamics simulations run by Baig et al.19 clearly

show a reduction of topological constraints in the steady state
of fast shear flows. Recently, we have proposed a simple model
for the kinetics of disentanglement and re-entanglement
processes.20 For a shear flow, and in the absence of chain
stretch, the model describes the rate of change of the
entanglement density through the simple equation
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t
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where ν is the fractional density of entanglements at time t (ν =
1 implying equilibrium), and β is a convective constraint release
(CCR) parameter of order unity. The negative term in eq 2
describes the loss rate of entanglements due to flow, while the
positive term accounts for the diffusive reconstruction rate. A
value of ν less than unity has two effects. On the one hand, it
directly reduces the stress in proportion with ν itself because of
the corresponding increase in the entangled network mesh size
(see eq 4 below). A second effect is on the orientational
relaxation time τ that also gets shortened because of the larger
mesh size or tube diameter, a. By assuming reptation, and
ignoring fluctuations, it is

τ τ ν=t t( ) ( )eq (3)

where τeq is the disengagement time at equilibrium. A time-
dependent τ also modifies the integral in eq 1 that becomes
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The set of eqs 2−4 can be solved to produce, for β = 0.5, the
two lower (dashed) curves in Figure 4, where it is understood
that the parameters tw/τ andWi = γτ̇ are now replaced by tw/τeq
and Wi = γτ̇eq. These curves show that also the structural
changes, if quantitatively significant, do not alter qualitatively
the results predicted by the merely orientational theory of Doi
and Edwards.
A last remark concerns the characteristic time for structural

reconstruction, which eq 2 assumes to be equal to the
orientational relaxation time, as no other mechanism is known
for the chains to interpenetrate one another’s spatial domain
different from diffusion (reptation). Is this assumption
consistent with the experiments? Many authors find that the
recovery of the shear stress maximum in repeated startup
experiments occurs over a time longer, or even much longer,
than the orientational relaxation time.1,2,4,5,7−9 On the contrary,
the results of Menezes and Graessley,3 Sanchez-Reyes and
Archer,6 and Wang et al.10,11 appear compatible with a recovery
of the startup maximum in a time of the same order of
magnitude of the orientational relaxation time, and it is
noteworthy that the polymers used by them are more
monodisperse. In this regard, one should remember that, for
entangled linear polymers, (i) the orientational time is highly
sensitive to the molar mass, growing with the 3.4 power of the
latter, and (ii) in fast flows of polydisperse polymers, the shear
stress maximum is dominated by the longer polymers that
stretch more. Hence, the longer recovery times found by many
authors could be due to polydispersity, although the problem
certainly requires further analysis.
In conclusion, in this letter we have shown that (for linear

polymers) the information obtained from repeated startup runs,
specifically both the nonmonotonic and the monotonic
recovery of the peak magnitude, cannot readily be interpreted,
if at all, in terms of structural changes,1,2,4−11 or of subtle effects

Figure 4. Results obtained when the shear rate in the second run is
larger than in the first, as for the data of Wang et al.10,11 Here σmax,eq
refers to the high shear rate. Upper (solid) curves are from eq 1. Lower
(dashed) curves are from eqs 2−4. Black and red curves are σmax/
σmax,eq vs tw/τ and vs (t1 + tw)/τ, respectively, t1/τ being equal to γ1/
Wi1 = 1.5/5 = 0.3. See text for values of other parameters.
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of chain stretch.12 Indeed, the purely orientational theory of
Doi and Edwards already predicts, qualitatively, the observed
behavior. Of course, chain stretch and disentanglement may,
and often do, contribute to the quantitative aspects, and
therefore, a quantitative theory accounting for all the known
mechanisms (orientation, stretch, entanglement density
change) might discriminate the specific contribution of the
structural change. Unfortunately, no such all-encompassing
quantitative theory is available to this day. The significance of
this letter, however, is to be found in the fact that many people,
especially those dealing with polymer processing, are convinced
that the drop in peak magnitude is a distinctive mark of
disentanglement, a concept that is here shown to be mostly a
misconception.
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